Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
PLoS Pathog ; 20(1): e1011880, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271294

RESUMO

BACKGROUND: West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. METHODS: We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time. FINDINGS: Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. CONCLUSION: Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Filogeografia , Europa (Continente)/epidemiologia , Surtos de Doenças
2.
Front Immunol ; 14: 1273661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954617

RESUMO

Conventional dendritic cells (cDCs) are antigen-presenting cells (APCs) that play a central role in linking innate and adaptive immunity. cDCs have been well described in a number of different mammalian species, but remain poorly characterised in the chicken. In this study, we use previously described chicken cDC specific reagents, a novel gene-edited chicken line and single-cell RNA sequencing (scRNAseq) to characterise chicken splenic cDCs. In contrast to mammals, scRNAseq analysis indicates that the chicken spleen contains a single, chemokine receptor XCR1 expressing, cDC subset. By sexual maturity the XCR1+ cDC population is the most abundant mononuclear phagocyte cell subset in the chicken spleen. scRNAseq analysis revealed substantial heterogeneity within the chicken splenic XCR1+ cDC population. Immature MHC class II (MHCII)LOW XCR1+ cDCs expressed a range of viral resistance genes. Maturation to MHCIIHIGH XCR1+ cDCs was associated with reduced expression of anti-viral gene expression and increased expression of genes related to antigen presentation via the MHCII and cross-presentation pathways. To visualise and transiently ablate chicken XCR1+ cDCs in situ, we generated XCR1-iCaspase9-RFP chickens using a CRISPR-Cas9 knockin transgenesis approach to precisely edit the XCR1 locus, replacing the XCR1 coding region with genes for a fluorescent protein (TagRFP), and inducible Caspase 9. After inducible ablation, the chicken spleen is initially repopulated by immature CD1.1+ XCR1+ cDCs. XCR1+ cDCs are abundant in the splenic red pulp, in close association with CD8+ T-cells. Knockout of XCR1 prevented this clustering of cDCs with CD8+ T-cells. Taken together these data indicate a conserved role for chicken and mammalian XCR1+ cDCs in driving CD8+ T-cells responses.


Assuntos
Linfócitos T CD8-Positivos , Galinhas , Animais , Apresentação de Antígeno , Células Dendríticas , Apresentação Cruzada , Mamíferos
3.
Front Vet Sci ; 10: 1086001, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266384

RESUMO

When studying the dynamics of a pathogen in a host population, one crucial question is whether it transitioned from an epidemic (i.e., the pathogen population and the number of infected hosts are increasing) to an endemic stable state (i.e., the pathogen population reached an equilibrium). For slow-growing and slow-evolving clonal pathogens such as Mycobacterium bovis, the causative agent of bovine (or animal) and zoonotic tuberculosis, it can be challenging to discriminate between these two states. This is a result of the combination of suboptimal detection tests so that the actual extent of the pathogen prevalence is often unknown, as well as of the low genetic diversity, which can hide the temporal signal provided by the accumulation of mutations in the bacterial DNA. In recent years, the increased availability, efficiency, and reliability of genomic reading techniques, such as whole-genome sequencing (WGS), have significantly increased the amount of information we can use to study infectious diseases, and therefore, it has improved the precision of epidemiological inferences for pathogens such as M. bovis. In this study, we use WGS to gain insights into the epidemiology of M. bovis in Cameroon, a developing country where the pathogen has been reported for decades. A total of 91 high-quality sequences were obtained from tissue samples collected in four abattoirs, 64 of which were with complete metadata. We combined these with environmental, demographic, ecological, and cattle movement data to generate inferences using phylodynamic models. Our findings suggest M. bovis in Cameroon is slowly expanding its epidemiological range over time; therefore, endemic stability is unlikely. This suggests that animal movement plays an important role in transmission. The simultaneous prevalence of M. bovis in co-located cattle and humans highlights the risk of such transmission being zoonotic. Therefore, using genomic tools as part of surveillance would vastly improve our understanding of disease ecology and control strategies.

4.
Gut Microbes ; 15(1): 2199659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37055940

RESUMO

Loop ileostomy is a common surgical procedure to allow downstream tissue healing, with the aim of re-joining the bowel approximately 12 months later. The reversal procedure is associated with a substantial morbidity up to 40%. Our previous research demonstrated that defunctioned ileum becomes atrophied, with extensive microbial dysbiosis. This study sought to investigate the potential influence of delaying ileostomy reversal surgery upon both clinical and pathological outcomes. Post-operative clinical data was recorded, including routine blood test results, duration of hospital stay, length of time with stoma and incidence of post-operative complications. We measured ileal fibrosis and atrophy and assessed whether these, or dysbiosis, were impacted by the length of time a stoma was in place, or were linked to clinical outcomes. Associations between clinical data were investigated using scatterplot matrix analysis and t-tests. We found no differences in time between ileostomy formation and reversal in patients experiencing complications vs. individuals with no complications. Furthermore, there were no correlations between days with stoma and pathological measures, such as atrophy or fibrosis, and no ongoing increases in collagen production at the time of reversal surgery. This data suggests that the length of time a stoma is in place does not impact on the likelihood of complications. The incidence of complications is associated with increased loss of microbiota in the defunctioned ileum, but importantly, the decrease in bacteria is not linked to time with stoma. Microbiota diversity in the functional and defunctioned limb correlated within an individual, and was not significantly different between those who experienced complications following surgery vs. those that didn't. Microbiota diversity was also not significantly impacted through delay (>365 days) in stoma reversal. We propose that methods to restore intestinal microbiota numbers, and not necessarily their composition, prior to reversal should be explored to improve the clinical outcomes of ileostomy reversal surgery.


Assuntos
Microbioma Gastrointestinal , Estomas Cirúrgicos , Humanos , Ileostomia/efeitos adversos , Disbiose/etiologia , Intestinos/cirurgia , Estomas Cirúrgicos/efeitos adversos
5.
Cell ; 186(5): 940-956.e20, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36764291

RESUMO

Fingerprints are complex and individually unique patterns in the skin. Established prenatally, the molecular and cellular mechanisms that guide fingerprint ridge formation and their intricate arrangements are unknown. Here we show that fingerprint ridges are epithelial structures that undergo a truncated hair follicle developmental program and fail to recruit a mesenchymal condensate. Their spatial pattern is established by a Turing reaction-diffusion system, based on signaling between EDAR, WNT, and antagonistic BMP pathways. These signals resolve epithelial growth into bands of focalized proliferation under a precociously differentiated suprabasal layer. Ridge formation occurs as a set of waves spreading from variable initiation sites defined by the local signaling environments and anatomical intricacies of the digit, with the propagation and meeting of these waves determining the type of pattern that forms. Relying on a dynamic patterning system triggered at spatially distinct sites generates the characteristic types and unending variation of human fingerprint patterns.


Assuntos
Transdução de Sinais , Pele , Humanos , Pele/metabolismo
6.
Glia ; 71(2): 334-349, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36120803

RESUMO

Microglia play key roles in brain homeostasis as well as responses to neurodegeneration and neuroinflammatory processes caused by physical disease and psychosocial stress. The pig is a physiologically relevant model species for studying human neurological disorders, many of which are associated with microglial dysfunction. Furthermore, pigs are an important agricultural species, and there is a need to understand how microglial function affects their welfare. As a basis for improved understanding to enhance biomedical and agricultural research, we sought to characterize pig microglial identity at genome-wide scale and conduct inter-species comparisons. We isolated pig hippocampal tissue and microglia from frontal cortex, hippocampus, and cerebellum, as well as alveolar macrophages from the lungs and conducted RNA-sequencing (RNAseq). By comparing the transcriptomic profiles between microglia, macrophages, and hippocampal tissue, we derived a set of 239 highly enriched genes defining the porcine core microglial signature. We found brain regional heterogeneity based on 150 genes showing significant (adjusted p < 0.01) regional variations and that cerebellar microglia were most distinct. We compared normalized gene expression for microglia from human, mice and pigs using microglia signature gene lists derived from each species and demonstrated that a core microglial marker gene signature is conserved across species, but that species-specific expression subsets also exist. Our data provide a valuable resource defining the pig microglial transcriptome signature that validates and highlights pigs as a useful large animal species bridging between rodents and humans in which to study the role of microglia during homeostasis and disease.


Assuntos
Microglia , Transcriptoma , Animais , Humanos , Camundongos , Suínos , Microglia/metabolismo , Roedores/genética , Análise de Sequência de RNA , Macrófagos/metabolismo
7.
PLoS Comput Biol ; 18(7): e1010310, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35877685

RESUMO

Graphia is an open-source platform created for the graph-based analysis of the huge amounts of quantitative and qualitative data currently being generated from the study of genomes, genes, proteins metabolites and cells. Core to Graphia's functionality is support for the calculation of correlation matrices from any tabular matrix of continuous or discrete values, whereupon the software is designed to rapidly visualise the often very large graphs that result in 2D or 3D space. Following graph construction, an extensive range of measurement algorithms, routines for graph transformation, and options for the visualisation of node and edge attributes are available, for graph exploration and analysis. Combined, these provide a powerful solution for the interpretation of high-dimensional data from many sources, or data already in the form of a network or equivalent adjacency matrix. Several use cases of Graphia are described, to showcase its wide range of applications in the analysis biological data. Graphia runs on all major desktop operating systems, is extensible through the deployment of plugins and is freely available to download from https://graphia.app/.


Assuntos
Algoritmos , Software
8.
BMC Biol ; 20(1): 14, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35027054

RESUMO

BACKGROUND: Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. RESULTS: We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. CONCLUSIONS: We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock.


Assuntos
Vírus da Febre Suína Africana , Doenças Transmissíveis , Vírus da Febre Suína Africana/genética , Animais , Interações Hospedeiro-Patógeno/genética , Macrófagos , Células-Tronco , Suínos
9.
Transbound Emerg Dis ; 69(4): e336-e343, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34448540

RESUMO

Lumpy skin disease virus (LSDV) is an emerging poxviral pathogen of cattle that is currently spreading throughout Asia. The disease situation is of high importance for farmers and policy makers in Asia. In October 2020, feral cattle in Hong Kong developed multi-focal cutaneous nodules consistent with lumpy skin disease (LSD). Gross and histological pathology further supported the diagnosis and samples were sent to the OIE Reference Laboratory at The Pirbright Institute for confirmatory testing. LSDV was detected using quantitative polymerase chain reaction (qPCR) and additional molecular analyses. This is the first report of LSD in Hong Kong. Whole genome sequencing (WGS) of the strain LSDV/Hong Kong/2020 and phylogenetic analysis were carried out in order to identify connections to previous outbreaks of LSD, and better understand the drivers of LSDV emergence. Analysis of the 90 core poxvirus genes revealed LSDV/Hong Kong/2020 was a novel strain most closely related to the live-attenuated Neethling vaccine strains of LSDV and more distantly related to wildtype LSDV isolates from Africa, the Middle East and Europe. Analysis of the more variable regions located towards the termini of the poxvirus genome revealed genes in LSDV/Hong Kong/2020 with different patterns of grouping when compared to previously published wildtype and vaccine strains of LSDV. This work reveals that the LSD outbreak in Hong Kong in 2020 was caused by a different strain of LSDV than the LSD epidemic in the Middle East and Europe in 2015-2018. The use of WGS is highly recommended when investigating LSDV disease outbreaks.


Assuntos
Doenças dos Bovinos , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Hong Kong/epidemiologia , Filogenia , Vacinas Atenuadas
10.
Front Immunol ; 12: 761949, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938288

RESUMO

The decline in mucosal immunity during aging increases susceptibility, morbidity and mortality to infections acquired via the gastrointestinal and respiratory tracts in the elderly. We previously showed that this immunosenescence includes a reduction in the functional maturation of M cells in the follicle-associated epithelia (FAE) covering the Peyer's patches, diminishing the ability to sample of antigens and pathogens from the gut lumen. Here, co-expression analysis of mRNA-seq data sets revealed a general down-regulation of most FAE- and M cell-related genes in Peyer's patches from aged mice, including key transcription factors known to be essential for M cell differentiation. Conversely, expression of ACE2, the cellular receptor for SARS-Cov-2 virus, was increased in the aged FAE. This raises the possibility that the susceptibility of aged Peyer's patches to infection with the SARS-Cov-2 virus is increased. Expression of key Paneth cell-related genes was also reduced in the ileum of aged mice, consistent with the adverse effects of aging on their function. However, the increased expression of these genes in the villous epithelium of aged mice suggested a disturbed distribution of Paneth cells in the aged intestine. Aging effects on Paneth cells negatively impact on the regenerative ability of the gut epithelium and could indirectly impede M cell differentiation. Thus, restoring Paneth cell function may represent a novel means to improve M cell differentiation in the aging intestine and increase mucosal vaccination efficacy in the elderly.


Assuntos
COVID-19 , Imunidade nas Mucosas/imunologia , Imunossenescência/imunologia , Celulas de Paneth/imunologia , Nódulos Linfáticos Agregados/imunologia , Animais , Diferenciação Celular/imunologia , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2
11.
Nature ; 591(7848): 92-98, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33307546

RESUMO

Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice.


Assuntos
COVID-19/genética , COVID-19/fisiopatologia , Estado Terminal , 2',5'-Oligoadenilato Sintetase/genética , COVID-19/patologia , Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 21/genética , Cuidados Críticos , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Reposicionamento de Medicamentos , Feminino , Estudo de Associação Genômica Ampla , Humanos , Inflamação/genética , Inflamação/patologia , Inflamação/fisiopatologia , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/virologia , Masculino , Família Multigênica/genética , Receptor de Interferon alfa e beta/genética , Receptores CCR2/genética , TYK2 Quinase/genética , Reino Unido
12.
Immunother Adv ; 1(1): ltaa008, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36284901

RESUMO

Introduction: Ageing is associated with increased number of infections, decreased vaccine efficacy and increased systemic inflammation termed inflammageing. These changes are reflected by reduced recall responses to varicella zoster virus (VZV) challenge in the skin of older adults. Vitamin D deficiency is more common in the old and has been associated with frailty and increased inflammation. In addition, vitamin D increases immunoregulatory mechanisms and therefore has the potential to inhibit inflammageing. Objectives: We investigated the use of vitamin D3 replacement to enhance cutaneous antigen-specific immunity in older adults (≥65 years). Methods: Vitamin D insufficient older adults (n = 18) were administered 6400IU of vitamin D3/day orally for 14 weeks. Antigen-specific immunity to VZV was assessed by clinical score assessment of the injection site and transcriptional analysis of skin biopsies collected from challenged injection sites pre- and post-vitamin D3 replacement. Results: We showed that older adults had reduced VZV-specific cutaneous immune response and increased non-specific inflammation as compared to young. Increased non-specific inflammation observed in the skin of older adults negatively correlated with vitamin D sufficiency. We showed that vitamin D3 supplementation significantly increased the response to cutaneous VZV antigen challenge in older adults. This enhancement was associated with a reduction in inflammatory monocyte infiltration with a concomitant enhancement of T cell recruitment to the site of antigen challenge in the skin. Conclusion: Vitamin D3 replacement can boost antigen-specific immunity in older adults with sub-optimal vitamin D status.

13.
Nat Aging ; 1(1): 101-113, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118005

RESUMO

We have previously shown that healthy older adults exhibit reduced cutaneous immune responses during a varicella zoster virus (VZV) antigen challenge that correlated with a nonspecific inflammatory response to the injection itself. Here we found that needle damage during intradermal injections in older adults led to an increase in the number of cutaneous senescent fibroblasts expressing CCL2, resulting in the local recruitment of inflammatory monocytes. These infiltrating monocytes secreted prostaglandin E2, which inhibited resident memory T cell activation and proliferation. Pretreatment of older participants with a p38 mitogen-activated protein kinase inhibitor in vivo decreased CCL2 expression and inhibited monocyte recruitment and secretion of prostaglandin E2. This coincided with an increased response to VZV antigen challenge in the skin. Our results point to a series of molecular and cellular mechanisms that link cellular senescence, tissue damage, excessive inflammation and reduced immune responsiveness in human skin and demonstrate that tissue-specific immunity can be restored in older adults by short-term inhibition of inflammatory responses.


Assuntos
Dinoprostona , Monócitos , Humanos , Idoso , Dinoprostona/metabolismo , Envelhecimento , Herpesvirus Humano 3 , Ativação Linfocitária , Fibroblastos
14.
Free Radic Biol Med ; 160: 40-46, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32768566

RESUMO

Skin melanisation ranges widely across human populations. Melanin has antioxidant properties and also acts as a filter to solar ultraviolet radiation (UVR) incident upon the skin. In this study we firstly examined whether melanin level might influence baseline levels of systemic oxidative stress, in 65 humans in vivo from the same geographical area ranging from the lightest to darkest skin type (phototype I-VI). This was examined in winter-time (latitude 53.5°N). Remarkably, we found that urinary biomarkers of oxidatively-generated DNA damage (8-oxodG) and RNA damage (8-oxoGuo) were significantly correlated with skin lightness (L*), such that 14-15% of the variation in their baseline levels could be explained by skin colour. Next we exposed 15 humans at the extremes of skin melanisation to a simulated summer-time exposure of solar UVR (95% UVA, 5% UVB; dose standardised to sunburn threshold), following which they provided a sample of every urine void over the next five days. We found that UVR induced a small but significant increase in urinary 8-oxodG and 8-oxoGuo, with differing kinetics between skin types. Thus greater melanisation is associated with protection against systemic oxidative stress, which may reflect melanin's antioxidant properties, and solar UVR exposure also influences systemic oxidative stress levels in humans. These novel findings may have profound implications for human physiology and health.


Assuntos
Estresse Oxidativo , Pigmentação da Pele , Pele , Raios Ultravioleta , Biomarcadores/metabolismo , Humanos , Pele/metabolismo , Raios Ultravioleta/efeitos adversos
15.
J Virol Methods ; 285: 113943, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32707050

RESUMO

Lumpy skin disease virus (LSDV) is a poxvirus that causes systemic disease in cattle, resulting in substantial economic loss to affected communities. LSDV is a rapidly emerging pathogen of growing global concern that recently spread from Africa and the Middle East into Europe and Asia, impacting the cattle population in these regions. An increase in research efforts into LSDV is required to address key knowledge gaps, however this is hampered by lack of suitable cell lines on which to propagate and study the virus. In this work we describe the replication and spread of LSDV on Madin-Darby bovine kidney (MDBK) cells, and the formation of foci-type poxvirus plaques by LSDV on MDBK cells. Methods utilising MDBK cells to quantify neutralising antibodies to LSDV, and to purify LSDV genomic DNA suitable for short read sequencing are described. These research methods broaden the tools available for LSDV researchers and will facilitate the gathering of evidence to underpin the development of LSD control and prevention programmes.


Assuntos
DNA Viral/isolamento & purificação , Doença Nodular Cutânea/virologia , Vírus da Doença Nodular Cutânea , Cultura de Vírus , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Bovinos , Cães , Vírus da Doença Nodular Cutânea/isolamento & purificação , Vírus da Doença Nodular Cutânea/fisiologia , Células Madin Darby de Rim Canino
16.
Front Microbiol ; 11: 659, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32362882

RESUMO

A network analysis including relative abundances of all ruminal microbial genera (archaea, bacteria, fungi, and protists) and their genes was performed to improve our understanding of how the interactions within the ruminal microbiome affects methane emissions (CH4). Metagenomics and CH4 data were available from 63 bovines of a two-breed rotational cross, offered two basal diets. Co-abundance network analysis revealed 10 clusters of functional niches. The most abundant hydrogenotrophic Methanobacteriales with key microbial genes involved in methanogenesis occupied a different functional niche (i.e., "methanogenesis" cluster) than methylotrophic Methanomassiliicoccales (Candidatus Methanomethylophylus) and acetogens (Blautia). Fungi and protists clustered together and other plant fiber degraders like Fibrobacter occupied a seperate cluster. A Partial Least Squares analysis approach to predict CH4 variation in each cluster showed the methanogenesis cluster had the best prediction ability (57.3%). However, the most important explanatory variables in this cluster were genes involved in complex carbohydrate degradation, metabolism of sugars and amino acids and Candidatus Azobacteroides carrying nitrogen fixation genes, but not methanogenic archaea and their genes. The cluster containing Fibrobacter, isolated from other microorganisms, was positively associated with CH4 and explained 49.8% of its variability, showing fermentative advantages compared to other bacteria and fungi in providing substrates (e.g., formate) for methanogenesis. In other clusters, genes with enhancing effect on CH4 were related to lactate and butyrate (Butyrivibrio and Pseudobutyrivibrio) production and simple amino acids metabolism. In comparison, ruminal genes negatively related to CH4 were involved in carbohydrate degradation via lactate and succinate and synthesis of more complex amino acids by γ-Proteobacteria. When analyzing low- and high-methane emitters data in separate networks, competition between methanogens in the methanogenesis cluster was uncovered by a broader diversity of methanogens involved in the three methanogenesis pathways and larger interactions within and between communities in low compared to high emitters. Generally, our results suggest that differences in CH4 are mainly explained by other microbial communities and their activities rather than being only methanogens-driven. Our study provides insight into the interactions of the rumen microbial communities and their genes by uncovering functional niches affecting CH4, which will benefit the development of efficient CH4 mitigation strategies.

17.
Viruses ; 13(1)2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396801

RESUMO

In 2019, a novel coronavirus, SARS-CoV-2/nCoV-19, emerged in Wuhan, China, and has been responsible for the current COVID-19 pandemic. The evolutionary origins of the virus remain elusive and understanding its complex mutational signatures could guide vaccine design and development. As part of the international "CoronaHack" in April 2020, we employed a collection of contemporary methodologies to compare the genomic sequences of coronaviruses isolated from human (SARS-CoV-2; n = 163), bat (bat-CoV; n = 215) and pangolin (pangolin-CoV; n = 7) available in public repositories. We have also noted the pangolin-CoV isolate MP789 to bare stronger resemblance to SARS-CoV-2 than other pangolin-CoV. Following de novo gene annotation prediction, analyses of gene-gene similarity network, codon usage bias and variant discovery were undertaken. Strong host-associated divergences were noted in ORF3a, ORF6, ORF7a, ORF8 and S, and in codon usage bias profiles. Last, we have characterised several high impact variants (in-frame insertion/deletion or stop gain) in bat-CoV and pangolin-CoV populations, some of which are found in the same amino acid position and may be highlighting loci of potential functional relevance.


Assuntos
Biodiversidade , COVID-19/virologia , Quirópteros/virologia , Coronavirus/genética , Pangolins/virologia , SARS-CoV-2/genética , Animais , Coronavirus/classificação , Evolução Molecular , Redes Reguladoras de Genes , Genoma Viral , Genômica , Especificidade de Hospedeiro , Humanos , Anotação de Sequência Molecular , Filogenia , Alinhamento de Sequência
18.
Nucleic Acids Res ; 47(14): 7262-7275, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31305886

RESUMO

RNA-Seq is a powerful transcriptome profiling technology enabling transcript discovery and quantification. Whilst most commonly used for gene-level quantification, the data can be used for the analysis of transcript isoforms. However, when the underlying transcript assemblies are complex, current visualization approaches can be limiting, with splicing events a challenge to interpret. Here, we report on the development of a graph-based visualization method as a complementary approach to understanding transcript diversity from short-read RNA-Seq data. Following the mapping of reads to a reference genome, a read-to-read comparison is performed on all reads mapping to a given gene, producing a weighted similarity matrix between reads. This is used to produce an RNA assembly graph, where nodes represent reads and edges similarity scores between them. The resulting graphs are visualized in 3D space to better appreciate their sometimes large and complex topology, with other information being overlaid on to nodes, e.g. transcript models. Here we demonstrate the utility of this approach, including the unusual structure of these graphs and how they can be used to identify issues in assembly, repetitive sequences within transcripts and splice variants. We believe this approach has the potential to significantly improve our understanding of transcript complexity.


Assuntos
Processamento Alternativo , Gráficos por Computador , Perfilação da Expressão Gênica/métodos , RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Genoma Humano/genética , Humanos , Modelos Genéticos , Modelos Moleculares , Conformação de Ácido Nucleico , Isoformas de RNA/química , Isoformas de RNA/genética , Isoformas de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo
19.
Glia ; 67(7): 1240-1253, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30758077

RESUMO

Growing recognition of the pivotal role microglia play in neurodegenerative and neuroinflammatory disorders has accentuated the need to characterize their function in health and disease. Studies in mouse have applied transcriptome-wide profiling of microglia to reveal key features of microglial ontogeny, functional profile, and phenotypic diversity. While similar, human microglia exhibit clear differences to their mouse counterparts, underlining the need to develop a better understanding of the human microglial profile. On examining published microglia gene signatures, limited consistency was observed between studies. Hence, we sought to derive a core microglia signature of the human central nervous system (CNS), through a comprehensive analysis of existing transcriptomic datasets. Nine datasets derived from cells and tissues, isolated from various regions of the CNS across numerous donors, were subjected independently to an unbiased correlation network analysis. From each dataset, a list of coexpressing genes corresponding to microglia was identified, with 249 genes highly conserved between them. This core signature included known microglial markers, and compared with other signatures provides a gene set specific to microglia in the context of the CNS. The utility of this signature was demonstrated by its use in detecting qualitative and quantitative region-specific alterations in aging and Alzheimer's disease. These analyses highlighted the reactive response of microglia in vulnerable brain regions such as the entorhinal cortex and hippocampus, additionally implicating pathways associated with disease progression. We believe this resource and the analyses described here, will support further investigations to the contribution of human microglia in CNS health and disease.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Transcriptoma/fisiologia , Doença de Alzheimer/patologia , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/tendências , Humanos , Camundongos , Microglia/patologia
20.
Cancer Immunol Res ; 6(11): 1388-1400, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30266715

RESUMO

The immune composition of the tumor microenvironment regulates processes including angiogenesis, metastasis, and the response to drugs or immunotherapy. To facilitate the characterization of the immune component of tumors from transcriptomics data, a number of immune cell transcriptome signatures have been reported that are made up of lists of marker genes indicative of the presence a given immune cell population. The majority of these gene signatures have been defined through analysis of isolated blood cells. However, blood cells do not reflect the differentiation or activation state of similar cells within tissues, including tumors, and consequently markers derived from blood cells do not necessarily transfer well to tissues. To address this issue, we generated a set of immune gene signatures derived directly from tissue transcriptomics data using a network-based deconvolution approach. We define markers for seven immune cell types, collectively named ImSig, and demonstrate how these markers can be used for the quantitative estimation of the immune cell content of tumor and nontumor tissue samples. The utility of ImSig is demonstrated through the stratification of melanoma patients into subgroups of prognostic significance and the identification of immune cells with the use of single-cell RNA-sequencing data derived from tumors. Use of ImSig is facilitated by an R package (imsig). Cancer Immunol Res; 6(11); 1388-400. ©2018 AACR.


Assuntos
Biomarcadores Tumorais/imunologia , Perfilação da Expressão Gênica/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Biomarcadores Tumorais/genética , Humanos , Melanoma/genética , Melanoma/imunologia , Melanoma/mortalidade , Melanoma/patologia , Neoplasias/genética , Neoplasias/imunologia , Reprodutibilidade dos Testes , Análise de Célula Única/métodos , Tracoma/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...